Syllabus

CSC 115 CS1: Introduction To Programming And Computational Thinking

General Information

<table>
<thead>
<tr>
<th>Date</th>
<th>April 16th, 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>William McLaughlin</td>
</tr>
<tr>
<td>Department</td>
<td>Computing Sciences</td>
</tr>
<tr>
<td>Course Prefix</td>
<td>CSC</td>
</tr>
<tr>
<td>Course Number</td>
<td>115</td>
</tr>
<tr>
<td>Course Title</td>
<td>CS1: Introduction To Programming And Computational Thinking</td>
</tr>
</tbody>
</table>

Course Information

Catalog Description
CS1: Introduction to Programming and Computational Thinking serves as a first course for all computer-related majors. This course is for beginning programmers, and is the first course in a sequence of three programming courses. The course emphasizes the development of languages and software, problem-solving, and programming in a structured, object-oriented language. The Java programming language is used throughout the course.

Credit Hours
3

Lecture Contact Hours
3

Lab Contact Hours
1

Other Contact Hours
0

Grading Scheme
Letter

Prerequisites

Placement in Math Level 1 (or higher)

Co-requisites

None

First Year Experience/Capstone Designation
This course DOES NOT satisfy the outcomes applicable for status as a FYE or Capstone.

SUNY General Education

This course is designated as satisfying a requirement in the following SUNY Gen Ed category
None

FLCC Values

Institutional Learning Outcomes Addressed by the Course
None

Course Learning Outcomes

Course Learning Outcomes

1. Construct fundamental computer algorithms to solve simple problems

2. Create basic computer programs using the formal syntax from a high-level, object-oriented programming language

3. Translate foundational algorithms into simple technical computer program solutions

Outline of Topics Covered

I. Fundamentals of Computer Problem Solving
 • Problem Analysis
 • Design Logic – Simple Algorithmic Development
 I. Flowcharts
 II. Pseudocode

II. Fundamentals of Computer Programming
 • Programming Languages and Environments
 I. Object-Oriented verses Structured Programming and Functional Methodologies
 II. Phases of Language Translation (Compiling, Interpreting, Linking, and Executing)
 III. Java Language Specification: API, JDK, and IDE
 IV. Error Conditions: Syntax, Runtime, and Logic
 • Software Development Process (IPO)
 I.
Requirements

II. Specification

III. Analysis

IV. Design

V. Implementation

VI. Testing

VII. Deployment

VIII. Maintenance

- Creating, Compiling, and Executing a Java Program
 I. Identifiers, Variables, and Constants
 II. Memory Representations and Data Types
 I. Numeric, String, Boolean, Character
 III. Assignment, Numeric, Relational and Logical Operators
 IV. Expression Evaluation: Assignment, Numeric, Boolean
 V. Fundamental Programming Constructs
 I. Sequence
 II. Selection
 III. Iteration

- Subprograms, Functions, and Methods
 I. Formal Parameters, Actual Parameters
 II. Passing Arguments and Return Values
 III. Method Overloading
 IV. Developing Reusable Code

- Secure Coding Techniques
 I. Variable Scope
 II. Input Data Validation

- Arrays
 I. Common Array Operations
 II. Sorting and Searching
This course is required as a core program course in the following program(s)