General Information

Date February 9th, 2023
Author Maura Sullivan
Department Conservation
Course Prefix CON
Course Number 202L
Course Title Principles of Terrestrial and Aquatic Ecology Lab
Dual Listing (also listed as): BIO 221L

Course Information

Catalog Description In this hands-on laboratory-based course, students will have the opportunity to conduct studies and perform experiments that enrich their knowledge and understanding of the scientific concepts learned in the lecture portion of CON 202/BIO 221 Principles of Terrestrial/Aquatic Ecology. Laboratory exercises will include a combination of field trips and observational and experimental studies as well as in-classes exercises aimed at preparing students for upper level coursework in the field of ecology (e.g. reading scientific papers, presenting data, interpreting graphs).

Credit Hours 1
Lecture Contact Hours 0
Lab Contact Hours 2
Other Contact Hours 0
Grading Scheme Letter

Prerequisites

CON 202/BIO 221 Principles of Terrestrial and Aquatic Ecology and BIO 122 General Biology II or BIO 125 Foundations of Life Science; minimum grade C-
Co-requisites

CON 202/BIO 221

First Year Experience/Capstone Designation

This course DOES NOT satisfy the outcomes applicable for status as a FYE or Capstone.

SUNY General Education

This course is designated as satisfying a requirement in the following SUNY Gen Ed category
None

FLCC Values

Institutional Learning Outcomes Addressed by the Course
Vitality, Inquiry, Perseverance, and Interconnectedness

Course Learning Outcomes

Course Learning Outcomes

1. Exercise the steps of scientific method (e.g. experimental design, collecting observations, building hypotheses, analyzing and communicating results).

2. Integrate results from peer-reviewed studies to advance comprehension of laboratory activities and independent research.

3. Execute standard ecological procedures (e.g. plant and animal sampling techniques, data analyses, spreadsheet usage, statistical analyses).

Outline of Topics Covered

I. Population Ecology
 a. Population Dynamic Studies (e.g. life history / cohort tables, mark-recapture experiments, dendrochronology studies, intra-specific competition experiments)

II. Community Ecology
 a. Field Sampling of Different Communities
 b. Species Interaction Experiments (e.g. interspecific competition experiments, predator-prey studies)
 c. Species Richness / Biodiversity Sampling

III. Ecosystem Ecology
 a. Biogeochemical Studies (e.g. carbon flow experiments, nutrient cycling studies)