Syllabus

BIO 221 Principles of Aquatic and Terrestrial Ecology

General Information

Date September 13th, 2023
Author Maura Sullivan
Department Conservation
Course Prefix BIO
Course Number 221
Course Title Principles of Aquatic and Terrestrial Ecology
Dual Listing (also listed as): CON 202

Course Information

Catalog Description This course is designed for second year students in Horticulture and Conservation degree programs. An introduction to the scientific study of the interactions between organisms and their environment. Students examine the influence of biotic and abiotic variables on species evolution, population dynamics, and community composition. Students are required to conduct an independent field study to integrate and reinforce ecological concepts learned throughout the degree program.

Credit Hours 3
Lecture Contact Hours 3
Lab Contact Hours 0
Other Contact Hours 0
Grading Scheme Letter

Prerequisites

ENG 101 Composition I AND BIO 121 General Biology I OR BIO 125 Foundations of Life Science; minimum grade C-

Co-requisites

None
First Year Experience/Capstone Designation

This course DOES NOT satisfy the outcomes applicable for status as a FYE or Capstone.

SUNY General Education

This course is designated as satisfying a requirement in the following SUNY Gen Ed categories
None

FLCC Values

Institutional Learning Outcomes Addressed by the Course
Inquiry, Perseverance, and Interconnectedness

Course Learning Outcomes

Course Learning Outcomes

1. Explain ecological concepts using appropriate terminology
2. Apply ecological concepts to explain observed patterns (spatial and temporal) in community structure and function
3. Practice technical writing skills
4. Integrate information from appropriate sources (primary and secondary)

Outline of Topics Covered

I. Introduction to Ecology
 I. Definition
 II. Hierarchical Level of Ecology
 III. Scientific method
 IV. Observation/Manipulation experiments
 V. Data and Graph interpretation

II. Climate
 I. Global Climate Patterns (e.g. Hadley Cells, Coriolis Effect, Thermohaline Circulation)
 II. Regional Climate Modifications (e.g. elevation, aspect, lake effect snow, orographic effect, upwelling, monsoons, etc.)

III. Soils
I. Soil Forming Factors
II. Soil Horizons
III. Soil Texture and Properties

IV. Aquatic Systems
 I. Water's Chemical and Physical Properties (e.g. covalent and hydrogen bonds, polarity, viscosity, cohesion, etc.)
 II. Lentic vs. Lotic
 III. Stream Orders
 IV. Seasonal Stratification and Mixing
 V. Eutrophic vs. Oligotrophic
 VI. Vertical and Horizontal Zones

V. Community Ecology
 I. Community Composition and Structure
 II. Relative Abundance
 III. Species Diversity Concepts and Equations
 IV. Succession
 V. Individualistic (Gleason) vs. Closed (Clements) Community Modes

VI. Biomes
 I. Characteristic Climatic
 II. Edaphic and Biological Properties of Eight Major Biomes (i.e. tropical rainforests, deserts, savannah, chaparral, temperature deciduous forest, temperate grassland, taiga, and tundra)

VII. Evolution
 I. Mechanisms of Evolution (Natural Selection, Mutations, Selective Mating, Migration, Genetic Drift)
 II. Eco-Types
 III. Phenotypic Plasticity

VIII. Plant & Animal Adaptations
 I. Autotrophs vs. Heterotrophs
 II. Photosynthesis (light reaction and Calvin Cycle)
 III. Photosynthetic Pathways (C3, C4, CAM)
 IV. Plant and Animal Adaptations in Response to Different Selective Pressures (e.g. low light, low oxygen, low moisture, hot/cold temperature)
 V. Different Animal Adaptations for Energy and Nutrient Consumption (i.e. feeding strategies and digestive tracts) and Maintaining Homeostasis (e.g. ectothermy vs. endothermy)

IX. Life History Traits
 I. Sexual vs. Asexual
 II. Sexual Forms (i.e. monoecious, dioecious, syneocious)
III. Mating Systems (e.g. monogamy, polygamy)
IV. Intrasexual Selection vs. Intersexual Selection
V. Altricial vs. Precocial
VI. R-Selection vs. K-Selection Strategies

X. Population Ecology
 I. Properties of Populations
 II. Population Growth Models (i.e. exponential and logistics)
 III. Intraspecific Population Regulation Dynamics

XI. Species Interactions
 I. Types of Species Interactions
 II. Fundamentals vs. Realized Niche
 III. Interspecific Competition
 IV. Predation