Syllabus

BIO 125 - Foundations of Life Science

General Information

Date April 25th, 2023
Author Clinton Krager
Department Science and Technology
Course Prefix BIO
Course Number 125
Course Title Foundations of Life Science

Course Information

Catalog Description This course is a brief overview to the unifying concepts in biology including, but not limited to molecular, cellular, metabolic, genetic, evolutionary, and whole organismal biology. This course relates the relevant concepts of living organisms to their environment. The laboratory component supports and reinforces lecture content.

Credit Hours 4
Lecture Contact Hours 3
Lab Contact Hours 2
Other Contact Hours 0
Grading Scheme Letter

Prerequisites

None

Co-requisites

None
First Year Experience/Capstone Designation

This course DOES NOT satisfy the outcomes applicable for status as a FYE or Capstone.

SUNY General Education

This course is designated as satisfying a requirement in the following SUNY Gen Ed category:
Natural Sciences (and Scientific Reasoning)

FLCC Values

Institutional Learning Outcomes Addressed by the Course
Vitality, Inquiry, Perseverance, and Interconnectedness

Course Learning Outcomes

1. Identify and analyze fundamental concepts of biology - including basic molecular, cellular, metabolic, genetic, evolutionary, and whole organismal biology.

2. Utilize basic laboratory techniques to design and conduct experiments.

3. Articulate comprehensive conclusions through use of scientific inquiry.

Outline of Topics Covered

I. Taxonomic System of Classification
 a. characteristics of each Domain and/or Kingdom from a cellular, metabolic and whole organism level.
 b. scientific application of taxonomy
 c. application of these concepts

II. Molecular Biology
 a. Carbohydrates
 b. Lipids
 c. Proteins
 d. Nucleic Acids

III. Relationship between Nitrogenous Base sequence in DNA and Nitrogenous Base sequence in RNA and Amino Acid sequence in a polypeptide and the configuration of a protein and genetically based characteristics

IV. Basic Cellular Structure and Function
 a. Organelle identification
 b. Molecular components of organelle
c. Metabolic function of organelle
 i. In relationship to other organelles
 ii. In relationship to the whole organism

V. Cellular energy
 a. Application of the First Law of Thermal Dynamics
 b. Aerobic Respiration
 i. Flow of energy
 1. Glycolysis
 2. Krebs Cycle
 3. Electron Transport Chain
 c. Anaerobic Respiration
 i. Lactic Acid Fermentation
 ii. Alcohol Fermentation

VI. Photosynthesis
 a. Impact of photosynthesis and photosynthesizing organisms on the environment and evolution of Aerobic Respiration
 b. Flow of Energy
 c. Light Reaction
 d. Calvin Cycle

VII. Transportation of water from roots to leaves
 a. Osmotic Pressure
 b. Capillary Action
 c. Transpiration

VIII. Sexual vs. asexual reproduction
 a. Genetic differences
 b. Population variability as a result of each
 c. Evolutionary consequences of each

IX. Cell Division
 a. Mitotic Cell Division
 i. Purpose
 ii. Genetic Results of Mitotic Cell Division
 iii. How these results are achieved
 b. Meiotic Cell Division
 i. Purpose
 ii. Genetic result of Meiotic Cell Division
 iii. How these results are achieved
 1. Crossing over
 2. Law of Independent Assortment
iv. Chromosomal Anomalies
v. Sex Determination

X. Mendelian Genetics
 a. Chromosome, Gene, Homologous Pairs of Chromosome, Allele, Genotype vs. Phenotype
 b. Punnett’s Squares
 c. Test Cross

XI. Alternatives to Mendelian Genetics
 a. Codominance
 b. Incomplete Dominance
 c. Multiple alleles
 d. Pleiotropy
 e. Polygenic Inheritance
 f. Effects of environment of expression of genes

XII. Evolution
 a. Definition
 b. Microevolution
 i. Natural Selection
 ii. Artificial Selection
 iii. Non-selection Influences
 1. Genetic Drift
 2. Founders Effect
 3. Bottle Neck Effect
 iv. Sexual Selection

XIII. Macroevolution
 a. The Biological Species Concept
 b. Mechanisms of Speciation
 i. Allopatric
 ii. Sympatric

XIV. Extinction
 a. Throughout geological time
 b. In recent history