Date: Fall 2014

I. Course Prefix and Number: PHY 101
 Course Name: Introduction to Physics
 Credit Hours and Contact Hours: 4 Credit Hours - 5 Contact Hours

Catalog Description:
An introductory course in physics for students who have not had high school physics, designed for non-science majors as well as those who plan to take College Physics or General Physics. Emphasizes: measurement, mechanics and heat; and includes selected topics from sound, light, electricity, and magnetism as they relate to our daily lives. Provides prerequisite for PHY 118, PHY 119, and PHY 151 and fulfills laboratory science requirements for non-science degrees. Prerequisite: MAT 095 with a C+ or better or placement into Math Level 1 or higher.

II. Course Outcomes and Objectives

Student Learning Outcomes:

Upon completion of the course the participant will be able to:
1. Find solutions to applied problems using numerical, graphical, and elementary algebraic techniques.
2. Explain basic physics concepts and how they relate to everyday experiences.
3. Demonstrate proficiency in problem solving methodology and critical thinking skills.
4. Explain and demonstrate how scientists use the scientific method to explore physical phenomena. The scientific method includes: observation, hypothesis development, measurement and data collection, experimentation, evaluation of evidence, and employment of mathematical and interpretive analysis.
5. Apply scientific data, concepts, and models in problem solving.
6. Work effectively with others in teams.
7. Access information for life-long learning. (This includes use of the text books, libraries, and the Internet)
8. Assess limitations of what they know, and know how to seek further knowledge pertinent to the subject matter.
9. Model problems appropriate for the given situation and criteria, and assess their performance.

Relationship to Academic Programs and Curriculum:

This course is a college level course that fulfills elective mathematics/science course requirements for all A.A., A.S., and A.A.S. degree programs. Each student should verify the appropriateness of this course for his/her program with his/her advisor.

College Learning Outcomes Addressed by the Course:

- writing
- oral communications
- reading
- ethics/values
- citizenship
- global concerns
III. Instructional Materials and Methods

Types of Course Materials:
- Textbook: Selected by department.
- Scientific Calculator: Specified by instructor.
- Supplementary material: Specified by instructor.

Methods of Instruction
1. Lecture
2. Discussion
3. Demonstration
4. Group activities
5. Laboratories

IV. Assessment Measures

Student Learning Outcomes will be assessed through a variety of activities. The Science/Technology department believes that each instructor should determine the grading system and evaluation methods that will be used in their sections of the course. Any grading system used in the course must be consistent with the College Catalog. These methods must be communicated to students the first week of the semester in writing. Possible evaluation methods include quizzes, tests, laboratory reports, collected assignments, group activities, et al. Such evaluations and related assignments will develop a student’s ability to read problems carefully, perform mathematics and use problem-solving techniques. Course policies with respect to attendance, late work, plagiarism, etc. must be communicated to the student.

V. General Outline of Topics Covered:
The course is divided into units organized around the following concepts.

I. MEASUREMENT
 1. SI Units
 2. Conversion of Units & Dimensional Analysis
 3. Significant Figures, Precision, and Accuracy
 4. Graphing
 5. Problem Solving

II. MECHANICS
 1. Newton's First Law of Motion: Inertia
 2. Linear Motion
 4. Newton’s Third Law of Motion: Action and Reaction
 5. Momentum
8. Rotational Motion
9. Gravity
10. Projectile and Satellite Motion

III. HEAT
1. Temperature
2. Heat
3. Specific Heat
4. Thermal Expansion

Selective topics from the following:

III. SOUND
1. Vibrations and Waves
2. Sound
3. Musical Sounds

IV. ELECTRICITY AND MAGNETISM
1. Electrostatics
2. Electric Current
3. Magnetism
4. Electromagnetic Induction

V. LIGHT
1. Properties of Light
2. Color
3. Reflection and Refraction
4. Light Waves